ASP.NET AJAX : Partial Refreshes (part 1) - A Simple UpdatePanel Test

1/15/2011 7:47:27 PM
The key technique in an Ajax web application is partial refreshes. With partial refreshes, the entire page doesn't need to be posted back and refreshed in the browser. Instead, when something happens the web page asks the web server for more information. The request takes place in the background, so the web page remains responsive. (It's up to you whether you use some sort of progress indicator if you think the request might take a noticeable amount of time.) When the web page receives the response, it updates just the changed portion of the page, as shown in Figure 1.
Figure 1. Ordinary server-side pages versus Ajax

ASP.NET includes a handy control that lets you take an ordinary page with server-side logic and make sure it refreshes itself in flicker-free Ajax style using partial updates. This control is the UpdatePanel.

The basic idea is that you divide your web page into one or more distinct regions, each of which is wrapped inside an invisible UpdatePanel. When an event occurs in a control that's located inside an UpdatePanel, and this event would normally trigger a full-page postback, the UpdatePanel intercepts the event and performs an asynchronous callback instead. Here's an example of how it happens:

  1. The user clicks a button inside an UpdatePanel.

  2. The UpdatePanel intercepts the client-side click. Now, ASP.NET AJAX performs a callback to the server instead of a full-page postback.

  3. On the server, your normal page life cycle executes, with all the usual events. Finally, the page is rendered to HTML and returned to the browser.

  4. ASP.NET AJAX receives HTML content for every UpdatePanel on the page. The client-side script code then updates the page, replacing the existing HTML that's in each panel with the new content. (If a change has occurred to content that's not inside an UpdatePanel, it's ignored.)


If you access a page that uses the UpdatePanel with a browser that doesn't support Ajax or doesn't have JavaScript switched on, it uses normal postbacks instead of partial updates. However, everything else still works correctly.

1. A Simple UpdatePanel Test

To try out the UpdatePanel, it makes sense to build a simple test page.

The following example (Figure 2) uses a simple page that includes two ingredients: an animated GIF image, and a shaded box that shows the current time and includes a Refresh Time button. When you click the Refresh Time button, the page grabs the current time from the web server and updates the label. However, the refresh process uses a partial update. As a result, the page won't flicker when it takes place. The animated GIF helps illustrate the point—even as you click the button to refresh the label, the lamp continues bubbling without a pause or hiccup.

Figure 2. Refreshing a label with a partial update

Building this page is easy. First, you need to add the ScriptManager control to the page. Like all controls that use ASP.NET AJAX, the UpdatePanel works in conjunction with the ScriptManager. If you don't have it in your page, the UpdatePanel won't work (and you'll receive an exception when you run the page). Furthermore, the ScriptManager needs to appear before the UpdatePanel, because the rendered page must have the JavaScript script block in place before the UpdatePanel can use it. It's a good idea to always place the ScriptManager at the top of the <form> section of the page.

Next, you need to add the content to the page. The animated GIF is fairly straightforward—you can use an ordinary <img> element to show it. However, the label and button require a bit more effort. To refresh the label using a partial refresh, you need to wrap it in an UpdatePanel. So start by adding an UpdatePanel to your page, and then drag and drop the button and label inside.

The UpdatePanel has one role in life—to serve as a container for content that you want to refresh asynchronously. Interestingly enough, the UpdatePanel doesn't derive from Panel. Instead, it derives directly from Control. This design causes a few quirks that you should take into account.

First, the UpdatePanel is invisible. Unlike the standard ASP.NET Panel, an UpdatePanel doesn't support style settings. If you want to display a border around your UpdatePanel or change the background color, you'll need to place an ordinary Panel (or just a plain <div> tag) in your UpdatePanel. Here's how it's done in the example shown in Figure 2:

<asp:UpdatePanel ID="UpdatePanel1" runat="server" UpdateMode="Conditional">
<div style="background-color:LightYellow;padding: 20px">
<asp:Label ID="lblTime" runat="server" Font-Bold="True"></asp:Label>
<br />
<br />
<asp:Button ID="cmdRefreshTime" runat="server"
Text="Refresh Time" />

This markup reveals another difference between the UpdatePanel and an ordinary Panel—the UpdatePanel uses a template. All the controls you add to an UpdatePanel are placed in an element named <ContentTemplate>. When the UpdatePanel renders itself, it copies the content from the ContentTemplate into the page. This seems like a fairly unimportant low-level detail, but it does have one important side effect. If you want to use code to dynamically add controls to an UpdatePanel, you can't use the UpdatePanel.Controls collection. Instead, you need to add new controls to the UpdatePanels.ContentTemplateContainer.Controls collection.

Now that you have the controls you need, you're ready to add the code. This part is easy—when the button is clicked, you simply react to the Click event and update the label:

Protected Sub cmdRefreshTime_Click(ByVal sender As Object, _
ByVal e As EventArgs) Handles cmdRefreshTime.Click

lblTime.Text = DateTime.Now.ToLongTimeString()
End Sub

Remarkably, that's all you need to do to complete this example. Now, when you click the Refresh Time button, the label will refresh without a full postback and without any flicker.

So how does it all work? Here's a blow-by-blow analysis of what's taking place:

  1. When rendering the HTML, the UpdatePanel looks at its contents. It notices that it contains one control that's able to trigger a postback—the button. It adds some JavaScript code that will intercept the button's click event on the client and use a JavaScript routine to handle it.

  2. When you click the Refresh Time button, you trigger the JavaScript routine.

  3. The JavaScript routine doesn't perform a full-page postback. Instead, it sends a background request to the web server. This request is asynchronous, which means your page remains responsive while the request is under way.


    Because the UpdatePanel uses asynchronous requests, it's possible to click the Refresh Time button several times before the result is returned and the time is updated. In this case, the response from the first few requests is ignored, and the response from the last request is used. (It's similar to what happens if you refresh a posted-back page several times before it's finished being processed on the server.)

  4. The background request is processed in exactly the same way as a normal postback. All the data from all the web controls is sent back to the web server, along with the view state information and any cookies. On the web server, the page life cycle is the same—first the Page.Load event fires, followed by the event that triggered the postback (in this case, Button.Click). If you're using data source controls like SqlDataSource, all the normal querying and data binding takes place. The final page is then rendered to HTML and sent back to the page.

  5. When the browser receives the rendered HTML for the page, it updates the current view state and grabs any cookies that were returned.

  6. The JavaScript routine then replaces a portion of the HTML on the page—just the portion that you wrapped in the UpdatePanel. The rest of the HTML for the page is simply discarded. In the current example, that means the HTML with the animated GIF is tossed out. (This really has no effect, because this part of the HTML is exactly the same in the new response as it was originally. However, it's important to understand that if you modify this part of your page on the web server, you won't see the results of your change in the web browser, because that area of the page isn't being updated.)

The most impressive aspect of the UpdatePanel control is that it allows your web page to behave in the same way it would if you weren't using any Ajax techniques. There is a bit of a price to pay for this convenience—namely, the request might take a little longer than necessary because of all the extra work that's taking place. In a more streamlined do-it-yourself approach, you'd simply ask the web server for exactly what you need. In this example, that means you'd simply ask for the current time, rather than an entire HTML document.

However, in most scenarios the UpdatePanel's more long-winded approach doesn't introduce any noticeable delay. Even better, it gives you the ability to deal with much more complex scenarios—for example, when you're modifying a section of a web page much more dramatically.


When you use the UpdatePanel, you don't reduce the amount of bandwidth being used or the time taken to receive the response from the server, because the entire page is still sent. The only difference is that the page is updated without a distracting flicker. Small as that advantage seems, it can make a major difference in how your web page "feels" to the person using it.

Top 10
Review : Sigma 24mm f/1.4 DG HSM Art
Review : Canon EF11-24mm f/4L USM
Review : Creative Sound Blaster Roar 2
Review : Philips Fidelio M2L
Review : Alienware 17 - Dell's Alienware laptops
Review Smartwatch : Wellograph
Review : Xiaomi Redmi 2
Extending LINQ to Objects : Writing a Single Element Operator (part 2) - Building the RandomElement Operator
Extending LINQ to Objects : Writing a Single Element Operator (part 1) - Building Our Own Last Operator
3 Tips for Maintaining Your Cell Phone Battery (part 2) - Discharge Smart, Use Smart
- First look: Apple Watch

- 3 Tips for Maintaining Your Cell Phone Battery (part 1)

- 3 Tips for Maintaining Your Cell Phone Battery (part 2)
- How to create your first Swimlane Diagram or Cross-Functional Flowchart Diagram by using Microsoft Visio 2010 (Part 1)

- How to create your first Swimlane Diagram or Cross-Functional Flowchart Diagram by using Microsoft Visio 2010 (Part 2)

- How to create your first Swimlane Diagram or Cross-Functional Flowchart Diagram by using Microsoft Visio 2010 (Part 3)
Popular Tags
Microsoft Access Microsoft Excel Microsoft OneNote Microsoft PowerPoint Microsoft Project Microsoft Visio Microsoft Word Active Directory Biztalk Exchange Server Microsoft LynC Server Microsoft Dynamic Sharepoint Sql Server Windows Server 2008 Windows Server 2012 Windows 7 Windows 8 Adobe Indesign Adobe Flash Professional Dreamweaver Adobe Illustrator Adobe After Effects Adobe Photoshop Adobe Fireworks Adobe Flash Catalyst Corel Painter X CorelDRAW X5 CorelDraw 10 QuarkXPress 8 windows Phone 7 windows Phone 8
Visit movie_stars's profile on Pinterest.