programming4us
programming4us
ENTERPRISE

Almost Here: Self-learning, Self-healing Computers (Part 3)

8/24/2014 10:56:39 AM

Processors that mimic the human brain could be the next big disruption in computing

The neuro-morphic processor constructed by them consists of a 20cm-diameter silicon wafer containing an array of identical, tightly-connected chips, with mixed-signal circuitry. While the simulated neurons are analogue, the synaptic weights and inter-chip communication are digital. Each wafer contains 48 reticles, each of which in turn contains eight high-input-count analogue neural network (HICANN) chips, making a total of 384 identical chips per wafer. Each 5x10 mm2 HI-CANN chip contains an analogue neural core (ANC) as the central functional block, along with supporting circuitry. In the current setup, each of the 384 chips implements 128,000 synapses and up to 512 spiking neurons, totalling to approximately 200,000 neurons and 49 million synapses per wafer.

Such a highly parallel chip design with configurable electronic neurons helps the team to understand the dependencies, synchronisation and communication among neurons and synapses, so the knowledge can later be applied to computing.

Super chip for prosthetic limbs

A team at Stanford University, headed by Kwabena Boahen, has also developed brain-inspired microchips, details of which were revealed in an IEEE conference earlier this year. The team has used 16 custom-designed 'Neurocore' chips to develop a circuit board called the 'Neurogrid' that can simulate one million neurons and billions of synaptic connections. The Neurogrid is 9000 times faster than today's personal computers, and is about 100,000 times more energy-efficient than a PC-based simulation of a million neurons. According to the team's estimates, a PC consumes 40,000 times more power than a Neurogrid.

A team at Stanford University, headed by Kwabena Boahen, has also developed brain-inspired microchips, details of which were revealed in an IEEE conference earlier this year.

A team at Stanford University, headed by Kwabena Boahen, has also developed brain-inspired microchips, details of which were revealed in an IEEE conference earlier this year.

Such speed and low-power characteristics of the Neurogrid make it an ideal platform to model and understand the functioning of the brain. Moreover, modified Neurocore chips can also be used for other nature-mimicking functions, such as say, to control prosthetic limbs. This is considered one of the most promising applications of the Neurogrid, and Boahen is working very closely with other teams at Stanford University to achieve this.

Comparing the Neurogrid to other similar projects, such as SyNAPSE and Brain Scales, Boahen writes in his IEEE paper: "Each of these research teams has made different technical choices, such as whether to dedicate each hardware circuit to modelling a single neural element (e.g., a single synapse) or several (e.g., by activating the hardware circuit twice to model the effect of two active synapses). These choices have resulted in different trade-offs in terms of capability and performance." Boahen arrives at a single metric to calculate the total system cost including the size of the chip, how many neurons it simulates and the power it consumes, and uses it to show the Neurogrid as the most cost-effective way to simulate neurons, in keeping with his goal of creating a system affordable enough to be widely used in research.

Boahen arrives at a single metric to calculate the total system cost including the size of the chip, how many neurons it simulates and the power it consumes, and uses it to show the Neurogrid as the most cost-effective way to simulate neurons.

Boahen arrives at a single metric to calculate the total system cost including the size of the chip, how many neurons it simulates and the power it consumes, and uses it to show the Neurogrid as the most cost-effective way to simulate neurons.

However, there are a few areas that the team is seriously working on improving now. One, of course, is the cost. Currently, the development of each Neurogrid uses a 15-year old fabrication process and costs around $40,000. By using modern processes and by fabricating chips in larger volumes, the cost could be brought down to $400 per million-neuron board.

By using modern processes and by fabricating chips in larger volumes, the cost could be brought down to $400 per million-neuron board.

By using modern processes and by fabricating chips in larger volumes, the cost could be brought down to $400 per million-neuron board.

 

Other  
  •  Microsoft Exchange Server 2010 : Implementing Edge Transport Servers - Placement of the Edge Transport Server (part 2) - Configuring EdgeSync
  •  Microsoft Exchange Server 2010 : Implementing Edge Transport Servers - Placement of the Edge Transport Server (part 1) - Setting Up the Edge Transport
  •  Microsoft Exchange Server 2010 : Configuring Hub Transport Servers (part 2) - Configuring a Send Connector
  •  Microsoft Exchange Server 2010 : Configuring Hub Transport Servers (part 1)
  •  Microsoft Exchange Server 2010 : Configuring Anti-Spam and Message Filtering Options (part 4) - Preventing Internal Servers from Being Filtered
  •  Microsoft Exchange Server 2010 : Configuring Anti-Spam and Message Filtering Options (part 3) - Defining Block List Exceptions and Global Allow/Block Lists
  •  Microsoft Exchange Server 2010 : Configuring Anti-Spam and Message Filtering Options (part 2) - Filtering Connections with IP Block Lists
  •  Microsoft Exchange Server 2010 : Configuring Anti-Spam and Message Filtering Options (part 1) - Filtering Spam and Other Unwanted E-Mail by Sender, Filtering Spam and Other Unwanted E-Mail by Recipien
  •  Microsoft Exchange Server 2010 : Creating and Managing Remote Domains (part 3) - Configuring Messaging Options for Remote Domains , Removing Remote Domains
  •  Microsoft Exchange Server 2010 : Creating and Managing Remote Domains (part 2) - Creating Remote Domains
  •  
    Top 10 Video Game
    -   Minecraft Mods - MAD PACK #10 'NETHER DOOM!' with Vikkstar & Pete (Minecraft Mod - Mad Pack 2)
    -   Minecraft Mods - MAD PACK #9 'KING SLIME!' with Vikkstar & Pete (Minecraft Mod - Mad Pack 2)
    -   Minecraft Mods - MAD PACK #2 'LAVA LOBBERS!' with Vikkstar & Pete (Minecraft Mod - Mad Pack 2)
    -   Minecraft Mods - MAD PACK #3 'OBSIDIAN LONGSWORD!' with Vikkstar & Pete (Minecraft Mod - Mad Pack 2)
    -   Total War: Warhammer [PC] Demigryph Trailer
    -   Minecraft | MINIONS MOVIE MOD! (Despicable Me, Minions Movie)
    -   Minecraft | Crazy Craft 3.0 - Ep 3! "TITANS ATTACK"
    -   Minecraft | Crazy Craft 3.0 - Ep 2! "THIEVING FROM THE CRAZIES"
    -   Minecraft | MORPH HIDE AND SEEK - Minions Despicable Me Mod
    -   Minecraft | Dream Craft - Star Wars Modded Survival Ep 92 "IS JOE DEAD?!"
    -   Minecraft | Dream Craft - Star Wars Modded Survival Ep 93 "JEDI STRIKE BACK"
    -   Minecraft | Dream Craft - Star Wars Modded Survival Ep 94 "TATOOINE PLANET DESTRUCTION"
    -   Minecraft | Dream Craft - Star Wars Modded Survival Ep 95 "TATOOINE CAPTIVES"
    -   Hitman [PS4/XOne/PC] Alpha Gameplay Trailer
    -   Satellite Reign [PC] Release Date Trailer
    Video
    programming4us
     
     
    programming4us