ENTERPRISE

Gamma – Ray Lens …Made Possible

7/7/2012 4:44:15 PM

Lenses are a part of every-day life – they help us focus words on a page, the light from stars, and the tiniest details of microorganisms. But making a lens for highly energetic light known as gamma rays had been thought impossible. Now, physicists have created such a lens, and they believe it will open up a new field of gamma-ray optics for medical imaging, detecting illicit nuclear material, and getting rid of nuclear material, and getting rid of nuclear waste.

Description: On the first platform, the gamma-ray lens in its two-axes gimbal.

On the first platform, the gamma-ray lens in its two-axes gimbal.

Glass is the material of choice for conventional lenses, and like other materials, it contains atoms which are orbited by electrons. In an opaque material, these electrons would absorb or reflect light. But in glass, the electrons respond to incoming light by shaking about, pushing away the light in a different direction. Physicists describe the amount of bending as the glass’s “refractive index”: A refractive index equal to one results in no bending, while anything more or less results in bending one way or the other.

Refraction works well with visible light, a small part of the electromagnetic spectrum, because the light waves have a frequency that chimes well with the oscillations of orbiting electrons. But for higher energy electromagnetic radiation –ultra-violet and beyond – the frequencies are too high for the electrons to respond, and lenses become less and less effective. It was only toward the end of last century that physicists found they could create lenses for x-rays, the part of the electromagnetic spectrum just beyond the ultraviolet, by stacking together numerous layers of patterned material. Such lenses opened up the field of x-ray optics, which, with x-rays’ short wavelengths, allowed imaging at a nanoscale resolution.

 

Description: Gamma – Ray Lens

Gamma – Ray Lens could be made to focus beams of a specific energy.

There the story should have ended. Theory says that gamma rays, being even more energetic than x-rays, ought to bypass orbiting electrons altogether; materials should not ben them at all and the refractive index for  gamma rays should be almost equal to one. Yet this not what a team of physicists led by Dietrich Habs at the Ludwig Maximilian University of Muchich in Germany and Michael Jentschel at the InstitutLaue - Langevin (ILL) in Grenoble, France, has discovered.

ILL is a research reactor that produces intense beams of neutrons. Habs, Jentschel, and colleagues used one of its beams to bombard samples of radioactive chlorine and gadolinium to produce gamma rays. They directed these down a 20-meter-long tube to a device known as a crystal spectrometer, which funneled the gamma rays into a specific direction. They then passed half of the gamma rays through a silicon prism and into another spectrometer to measure their final direction, while they directed the other half straight to the spectrometer unimpeded. To the researchers’ surprise, as they report in a paper due to be published this month in Physical Review Letters, gamma rays with an energy above 700 kiloelectronvolts are slightly bent by the silicon prism.

Description: Such focused beams could detect radioactive bomb-making material, or radioactive tracers used in medical imaging.

Such focused beams could detect radioactive bomb-making material, or radioactive tracers used in medical imaging.

“Everything was wrongly predicted,” explains Habs. “But we said, [the refraction] looks so marvelous for x-rays, why don’t we have a look whether there is something? And suddenly we found there is a totally unexpected effect.”

So what drives this new bending effect? Although he can’t be sure, Habs believes it resides in the nuclei at the heart of the silicon atoms. Although electrons don’t normally reside in nuclei because of the very strong electric fields there, quantum mechanics allows pairs of “virtual” electrons and antielectrons, or positrons, to blink briefly into existence and then recombine and disappear again. Habs thinks the sheer number of these virtual electron –positron pairs amplifies the gamma –ray scattering, which is normally negligible, to a detectable amount.

The bending in his group’s experiment isn’t much – about a millionth of a degree, which corresponds to a refractive index of about 1.000000001. however, it could be boosted using lenses made of materials with larger nuclei such as gold, which should contain more virtual electron –positron pairs. With some refinement, gamma-ray lenses could be made to focus beams of a specific energy.

Description: A photograph of gold lenses · The gold standard for gamma-ray lenses

A photograph of gold lenses · The gold standard for gamma-ray lenses

Such focused beams could detect radioactive bomb-making material, or radioactive tracers used in medical imaging. That’s because the beams would only scatter off certain radioisotopes, and stream pas others unimpeded. The beams could even make new isotopes altogether, by “evaporating” off protons or neutrons from existing samples. That process could trun harmful nuclear waste into a harmless, nonradioactive byproduct.

“It is great to see that the advances x-ray optics have made…over the past 20 years might now even be moving into the [gamma ray] range,” says Gerhard Materlik, chief executive of the Diamond Light Source, an x-ray facility in Didcot, U.K. “I hope that the predictions made by the authors about possible gamma ray optics can be realized to turn them into real optical components.”

Other  
  •  Tech Chance - Revamps …Worsts Ever!
  •  Organic Computing (Part 2)
  •  Organic Computing (Part 1)
  •  The Price of Computer Components Is Going Up? (Part 3)
  •  The Price of Computer Components Is Going Up? (Part 2)
  •  The Price of Computer Components Is Going Up? (Part 1)
  •  The Best Computers You're (Probably) Never Heard Of (Part 3) - Z88, Atari Falcon
  •  The Best Computers You're (Probably) Never Heard Of (Part 2) - Tatung Einstein, Camputers Lynx
  •  The Best Computers You're (Probably) Never Heard Of (Part 1) - Xerox Star, The Grundy NewBrain
  •  Embarrassing Bugs (Part 3)
  •  Embarrassing Bugs (Part 2)
  •  Embarrassing Bugs (Part 1)
  •  Simplicity: intuitive design, simple choices, and familiarity
  •  Retro - Cloud Computing
  •  Problem At Sony Corporation - Can Sony Stay Relevant In An Apple World?
  •  Tim Cook: “Of course, I'm going to change things.”
  •  Sign Language Technology (Part 3) - Seimens Hearing Aids
  •  Sign Language Technology (Part 2) - Why Was Sign Abandoned?
  •  Sign Language Technology (Part 1)
  •  How To Specify And Build A Media PC (Part 5)
  •  
    Top 10
    Nikon 1 J2 With Stylish Design And Dependable Image And Video Quality
    Canon Powershot D20 - Super-Durable Waterproof Camera
    Fujifilm Finepix F800EXR – Another Excellent EXR
    Sony NEX-6 – The Best Compact Camera
    Teufel Cubycon 2 – An Excellent All-In-One For Films
    Dell S2740L - A Beautifully Crafted 27-inch IPS Monitor
    Philips 55PFL6007T With Fantastic Picture Quality
    Philips Gioco 278G4 – An Excellent 27-inch Screen
    Sony VPL-HW50ES – Sony’s Best Home Cinema Projector
    Windows Vista : Installing and Running Applications - Launching Applications
    Most View
    Bamboo Splash - Powerful Specs And Friendly Interface
    Powered By Windows (Part 2) - Toshiba Satellite U840 Series, Philips E248C3 MODA Lightframe Monitor & HP Envy Spectre 14
    MSI X79A-GD65 8D - Power without the Cost
    Canon EOS M With Wonderful Touchscreen Interface (Part 1)
    Windows Server 2003 : Building an Active Directory Structure (part 1) - The First Domain
    Personalize Your iPhone Case
    Speed ​​up browsing with a faster DNS
    Using and Configuring Public Folder Sharing
    Extending the Real-Time Communications Functionality of Exchange Server 2007 : Installing OCS 2007 (part 1)
    Google, privacy & you (Part 1)
    iPhone Application Development : Making Multivalue Choices with Pickers - Understanding Pickers
    Microsoft Surface With Windows RT - Truly A Unique Tablet
    Network Configuration & Troubleshooting (Part 1)
    Panasonic Lumix GH3 – The Fastest Touchscreen-Camera (Part 2)
    Programming Microsoft SQL Server 2005 : FOR XML Commands (part 3) - OPENXML Enhancements in SQL Server 2005
    Exchange Server 2010 : Track Exchange Performance (part 2) - Test the Performance Limitations in a Lab
    Extra Network Hardware Round-Up (Part 2) - NAS Drives, Media Center Extenders & Games Consoles
    Windows Server 2003 : Planning a Host Name Resolution Strategy - Understanding Name Resolution Requirements
    Google’s Data Liberation Front (Part 2)
    Datacolor SpyderLensCal (Part 1)